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Presentation for Today

I Why multilingual NER ?
I How to build state-of-the-art NER models under different

settings ?
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1. Why Multilingual NER ?
– A basic module for many applications.
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Why NER ?

I A classical problem in information extraction.
I Entity recognition is a basic tool for building knowledge graph.
I In search, structured understanding for query & document.
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Challenges of building SOTA Multilingual NER Models:

I Natural language sentences are flexible. Examples in CoNLL
2003:

I West Bromwich 3 0 2 1 2 3 2
I Man City.

I Ambiguity and lack of knowledge.
I Hong Kong: LOC
I Hong Kong Newsroom: ORG
I Hong Kong Open: MISC

I Low resource.
I multi-lingual: 7000+ languages
I multi-domain: social media, news, biomedical, e-commerce.

These challenges also exist in many kinds of NER tasks!
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On building SOTA mono-lingual models:
▶ More Embeddings, Better Sequence Labelers?, Findings of EMNLP 2020
▶ An Investigation of Potential Function Designs for Neural CRF. Findings of EMNLP 2020
▶ Automated Concatenation of Embeddings for Structured Prediction, ACL 2021
▶ Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning, ACL 2021

On building cross-lingual models:
▶ Risk Minimization for Zero-shot Sequence Labeling. ACL 2021
▶ Multi-View Cross-Lingual Structured Prediction with Minimum Supervision. ACL 2021

On building unified models:
▶ Structure-Level Knowledge Distillation for Multilingual Sequence Labeling. ACL 2020
▶ Structural Knowledge Distillation: Tractably Distilling Information for Structured Predictor. ACL 2021

On speeding up models:
▶ AIN: Fast and Accurate Sequence Labeling with Approximate Inference Network. EMNLP 2020
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2. How to build a SOTA NER model ?
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Research Roadmap for Today

Monolingual NER Embedding Combination (Findings of EMNLP 2020)

Automatic Combination of Embedding (ACL 2021)

Context Enrichment External Context Retrieval (ACL 2021)

Low-resource NER Risk Minimization for Zero-shot NER (ACL 2021)

Multi-view Learning (ACL 2021)

Unified Multi-NER Knowledge Distillation (ACL 2020, ACL 2021)
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Background: NER as Sequence Labeling

…

…

Word Representations

BiLSTM Encoder

Softmax or various CRFsInference Layer

x1 x2 x3 xn

h1 h2 h3 hn

Choices:
I Pick specific embeddings, BERT, FLAIR, Elmo, word2vec.
I Directly finetune transformer-based architechtures.
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Background: Knowledge Distillation Part 1

Figure 1: Knowledge distillation

Loss function:

LKL( ) = KL( ( j )jj ( j ))

Properties:
I Teaching in a soft manner
I Do not rely on gold labels
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Background: Knowledge Distillation Part 2

LKL( ) = KL( ( j )jj ( j ))

Generalize to
I Different model family/structure: ! how ( j�) is modeled.

(Complexity issues) [Two unified multilingual NER projects]

) LKL = KL( ( j )jj ( j ))

I Same model but different inputs: [Monolingual NER project]

) LKL = KL( ( j ; ; )jj ( j ; ))

I Different models with different inputs: [X-lingual NER project]

) LKL = KL( ( j ; ; )jj ( j ; ))
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2.1 On building a SOTA Monolingual NER model
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Motivation: Insights from Preliminary Experiments

NER Chunking
BERT 91.3
FLAIR 82.1

Table 1: Single embeddings results on 8 NER and 2 chunking dataset

Questions ?
I For sequence labeling, will multiple embeddings be better

than one ?
I Will this conclusion hold for different situations? like,

low-resource.
I Is word embedding still helpful ?
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Plenties of Embedding are Available

We divide the embedding variants according to:
I : glove/fasttext/MUSE
I : char-CNN/char-BiLSTM
I : Elmo
I : FLAIR/m-FLAIR
I :

BERT/mBERT/RoBERTa/XLMR
In our experiments:

I : fasttext
I : char-BiLSTM
I : FLAIR
I : mBERT
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More Emb, Better Seq-Labelers?

An extensive study of concatenating different embeddings.
Findings of:

I generally better.
I yes! word

embeddings are always helpful.
I not always better.

In real applications, to search for the best configuration.
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2.2 On Automating the Previous Process?

ACL 2021
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In Real Applications

How to build a realistic model in practice?
I Thousands of embedding choices to pick for a given task.
I Different tasks may depend on different embeddings.
I How to select task-specific embeddings ?
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Reformulate the Problem

Think about how we select the embeddings for a given task:
I Step #1: Pick some embeddings, check the performance.
I Step #2: Compare the performance with previous records.
I Step #3: Get a feeling on which embedding is useful and

which is not, and update the ”selection” model.

Automated Concatenation of Embeddings (ACE).
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Approach
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Two Modules:
I Controller: which embeddings to pick?

ctrl( ; �) =
Y
=1

ctrl( ; � )

I Task Model: structured predictor.
seq( j ) = BiLSTM-CRF( ( ); )

graph( j ) = BiLSTM-Biaffine( ( ); )

Objective Function:
(�) = ctrl( ;�)[ ( ; )]

20 / 58



Setting: Extensive Experiments
Tasks:

I NER: CoNLL NER
I POS: Twitter POS
I Chunking: DE/EN Chunk
I Aspect Extraction: SemEval 14/15/16
I Dependency Parsing: PTB
I Semantic Dependency Parsing: SemEval 2015

Embeddings: (11 embeddings)
I ELMo
I BERT, XLMR
I Glove, fastText
I char rnn
I mulilingual BERT
I FLAIR, mulilingual FLAIR (forward & backward)
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Experiments: Comparisons with Random Search

I ACE consistently outperforms Random & All in all datasets &
tasks.

[Automated Concatenation of Embeddings for Structured Prediction, ACL 2021]
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